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1. Introduction 
Presently, organ transplants are the most effective treatments, and in many cases, the only              
viable treatments, for end stage organ failure[15]. However, increased demand for organ            
donations has far outstripped the supply. Between 1995 and 2005, the waiting list for organ               
donations grew 19% annually, while the annual increase in the number of donors only reached               
3.7%[15]. This trend has changed minimally, and the result is that there are now over 100,000                
individuals in the US awaiting organ transplants[1], with 10,000 being added each year, with less               
than 25% of them receiving transplants[5]. The situation is poor enough in fact, that several               
European nations have considered providing monetary incentive to increase the number of            
willing donors[4]. 
 
Consequently, much work has been dedicated towards investigating the possibility of using            
engineered cellular and tissue scaffolds as a substitute for biologically-derived organs[6]. While            
there has been a significant amount of success in engineering skin grafts and dermal implants,               
generating viable tissue scaffolds for more advanced organs has been much more difficult[6]. A              
major reason for this is the limited or lack of vascularization in many of these engineered                
constructs. In vitro vascularization has historically been difficult due to the structural and             
organizational complexity involved. However, it is also essential, as the limited diffusivity of most              
essential nutrients and metabolites mean that cells cannot survive more than 100 um from a               
nutrient source[12]. Because of this, non-vascularized scaffolds have extremely limited thickness           
and overall size. 
 
With the development of 3D bioprinting however, the difficulties of vascularization have been             
greatly mitigated, as the printers allow for construction of relatively complex and vascularized 3D              
structures while minimally compromising the quality of the scaffold. The 3D bioprinting process             
is, on the whole, relatively simple. In general, only 3 major components are needed: a matrix                
material, a material for the vascular channels, and a cell type[10]. The matrix material is typically                
a biocompatible polymer (i.e. collagen, gelatin, etc.), and is used to encapsulate the desired cell               
type. The 3D printer is then used to extrude the cell-matrix mix to form a base of predetermined                  
dimensions. On top of the base, the printer will then extrude the vascular channel material to                
form the vascular pattern desired. This will subsequently be enclosed by layering the cell-matrix              
mix on top. The vascular material is then evacuated to open the vascular channel, which will                
then be perfused with nutrient media to ensure cell survival (Figure 1). 
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Figure 1: procedure for 3D printing biomatrices[9] 

 
While the procedure is relatively straightforward, there are many parameters that need to be              
optimized, including the type of material used for the matrix, the dimensions of the matrix, and                
the cell seeding density[8]. Experimentally, this can become extremely time-consuming, as the            
flexibility of most 3D printers allows for a huge number of customizable parameters to be               
combined. As such, a mathematical model predicting the diffusive distribution of essential            
nutrients in a cellularized matrix may be extremely relevant and helpful. 

2. Problem Statement 

2.1 General Goal 
The goal of the project is to create a mathematical model that can be used to characterize                 
diffusion of a specified nutrient through a 3D bio-printed matrix, while forecasting the survival of               
the seeded cells utilizing nutrient consumption rates per cell and cell proliferation rates obtained              
from literature. 

2.2 System Setup 

A diagram of the system is shown in Figure 2, consisting of a single vascular channel running                 
through the center of a bio-printed, cell-seeded matrix inside a sealed container. The nutrient of               
interest is glucose, which is known to be essential for cell survival as a carbon source[7].                
Specifically, a solution of Dulbecco's Modified Eagle Medium (DMEM), a common cell culture             
medium, with standard glucose concentration is run through the vascular structure, from which it              
can continuously diffuse through the matrix in the directions indicated by arrows.            
Simultaneously, as the glucose diffuses throughout the matrix, it will also be consumed by the               
cells. 
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Figure 2: Initial diffusion-system setup 

 

2.3 Model Setup 
Overall, glucose concentration can be modeled by the one-dimensional diffusion equation           
shown below.  

 
Here, C(x,t) represents glucose concentration across the matrix as a function of both space and               
time. For simplicity, we initially assume that the concentration only changes in the x dimension,               
with a multidimensional model described later in Section 6. In our scenario, the matrix will be                
seeded with HepG2 cells, which are a carcinoma cell line frequently used to model hepatocytes.               
Because the cells seeded in the matrix consume glucose, we add the forcing term Q(x,t).               
Throughout this report, Q(x,t) will be modified such that it gradually becomes more             
representative of an actual experimental scenario. The diffusion coefficient of glucose is            
represented by “D”, and is dependent on the material of the matrix. While a large variety of                 
materials can be used, we will limit ourselves to two biopolymers that are most frequently used                
in this context, collagen and alginate[2].  
 
Notably, the matrix is symmetric about the vascular channel, meaning both halves should have              
identical diffusion properties. As such, we only model one half of the matrix, assuming that the                
behavior of the other half will be identical.  
 
With regards to boundary conditions, the location of the vascular structure is set as x = 0, and                  
the edge of the matrix as x = L. In our model, L is given a practical value of 2 cm, which is                       
applicable in many printing systems[8]. Because media with a set glucose concentration            
constantly flows through vascular structure, a constant value boundary condition exists at x = 0               
such that the glucose concentration is equal to that of DMEM, designated as C(0, t) = C0 (C0 =                   
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24.75 mM[7]). By existing protocols, the matrix is typically sealed on all sides to prevent               
contamination[8], meaning a zero-flux boundary condition exists at x = L. Additionally, based on              
existing protocols, matrices are typically formulated with a 1:1 dilution of media[8]. Thus, initial              
glucose concentration throughout the matrix should be half that of the DMEM, and C(x, 0) =                
C0/2. The initial condition and boundary conditions are summarized below, and remain relevant             
in all models described in this report unless otherwise stated.  

 

3. 1-D Glucose Diffusion in a Collagen Matrix with Stable Cell Density 
As the simplest case, we assume that the cells seeded in a collagen matrix neither proliferate                
nor die, while consuming glucose at a constant rate. The rate of glucose consumption (-Q0) can                
be calculated by multiplying the glucose uptake rate per cell (U) by the seeding density (⍴0). The                 
rate of hepatocyte glucose consumption (U = 6.48 x 10-11 mmol/cell/hour) was obtained from              
literature[3], and cell seeding density was set at a standard of 5 x 108 cells/L[9]. Additionally, the                 
diffusion constant (D) of glucose through collagen is reported as being D = 1.3 x 10-6 cm2/s[14]                 
This scenario is characterized in Figure 1, and can be represented by the partial differential               
equation below.  

 
Because no time-dependence exists in either the boundary or forcing terms, this PDE can be               
solved using the “Poison-Tooth Extraction Method”. 
 
The particular solution Cp(x,t) can be calculated by making a steady state assumption to remove               
the time-dependent term, and then satisfying the boundary conditions.  

 

 
We then solve for the homogeneous equation in which the forcing term is removed, and               
boundary conditions are set as zero.  

 
Using the separation of variables technique, we can calculate the homogeneous solution as a              
Fourier Series, shown below.  

 

5 



The full solution is obtained by summing the particular and homogeneous solutions, and then              
applying initial conditions to solve for the orthogonal Fourier coefficient Bn.  

 
Detailed steps are listed in Appendix A .  
 
The solution is displayed in Figure 3a over a time span of 960 hours, representing 4 weeks of                  
cell culturing. An equivalent numerical solution can be obtained using the MATLAB function             
pdepe, and is shown in Figure 3b.  
 

 
Figure 3: Analytical and numerical results of 1-D glucose diffusion model in collagen with stable cell density. 
 
Several prominent features can be noted in the graphs. At x = 0, the concentration remains C0,                 
indicating the presence of the glucose-containing DMEM. From there, the glucose concentration            
rapidly drops off, as perfusion of glucose to further regions is diffusion-dependent. At t = 0, the                 
concentration is consistently C0/2 along x, as the matrix is formulated to be half-composed of               
DMEM. As time goes on, the glucose concentration decreases at all locations before stabilizing,              
marking the balance between diffusion from the source, and consumption by the cells. In both               
cases, even the furthest locations from the vascular channel maintain glucose concentrations            
above zero, indicating that the system is adequate to maintain a cell population at a 5 x 108                  
cells/L density.  
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4. 1-D Glucose Diffusion in a Collagen Matrix with Exponential Cell           
Growth 
The stable cell density scenario presented in the previous section illustrates the simplest form of               
the problem being considered, and provides an adequate representation when the seeded cells             
are not likely to proliferate, as is the case with select cell types and conditions. However, the                 
goal when creating a 3D cellular matrix, is typically for the cells to proliferate such that they are                  
able to remodel the matrix in a manner that allows it to be transplanted in place of damaged                  
tissue[6].  
 
In most cases, cells will proliferate as long as they are provided with conditions required for                
survival, and the particular condition examined here is adequate supply of glucose. Here, we              
make several assumptions to model this proliferation.  
 
Because mitosis divides a single cell into two, the number of cells in a growing culture should                 
effectively double with each round of division. This suggests that cell proliferation could be              
accurately modeled as exponential. With increased cell number however, there should also be             
increased glucose consumption. Thus, the driving force (Q) in the model will now be function of                
time. Notably, the glucose consumption rate will still be calculated as a constant uptake rate per                
cell (U) multiplied by cell density (⍴), but rather than being constant, cell density will grow                
exponentially, as summarized below. 
 

Q = U⍴0  →  Q(t) = U⍴(t) 
⍴(t) = ⍴ 02kt  → -Q(t) = -U⍴ 02kt 

 

As was the case with the previous model, Q is the rate of glucose consumption in mM/hour and                  
is the forcing term of the system, while U is the glucose uptake rate per cell in mmol/hour/cell.                  
Additionally, ⍴(t) is the time-dependent cell density (cells/L), which is based on exponential             
growth of the seeding density at time t = 0, ⍴0 (cells/L). Notably, the actual exponential model is                  
specified by the exponential growth constant k, which is derived from literature[13]. 
 
The revised differential equation with the new driving force term becomes: 

 
Because the driving force is now a function of time, the equation must be solved analytically                
using Green’s Function. In particular, Green’s Function was specified by the value-flux boundary             
conditions described in Section 2.2. 

 
The equation is then solved by applying the Green’s Function in 4 different terms; one for the                 
initial condition, one for the driving force, one for the constant-value boundary at x = 0 and one                  
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for the flux boundary at x = L. The function for the concentration in terms of x and t is then the                      
summation of these four terms. This is shown below. 
 
C(x,t) = 
 
Initial Condition Term 

 
Driving force term 

 
Value boundary at x = 0 term 

 
Flux boundary at x = L term 

 
Each of these terms is then solved analytically, and the individual solutions are summed to               
arrive at the full solution to the partial differential equation. 
 
The detailed solution is included as an appendix to this report. But the full solution is provided                 
below. 

 

 
This solution and its numerical equivalent, generated using the MATLAB pdepe function, are             
plotted below (Figure 4). Because of the unique nature of the Green’s Function solution as an                
infinite summation series, the x = 0 term of the expression is calculated incorrectly as being                
zero, and as such, the constant-value boundary is cut off from the graph. 
 

8 



 
Figure 4: Analytical and numerical results of 1-D glucose diffusion in collagen with exponential cell growth. 
 
As expected, the analytical and numerical methods produced similar results, which can also be              
compared with the results of the first scenario (shown again below for convenience). 

 
Figure 5: Analytical and numerical results of 1-D glucose diffusion model in collagen with stable cell density (identical                  
to Figure 3). 
 
Clearly, the addition of exponential cell growth resulted in rapid depletion of the glucose              
concentration, even in the portion of the matrix near the glucose source (x ≅ 0). A clearer                 
surface from the exponential growth scenario (zoomed in on timescale) is shown in Figure 6. 
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Figure 6: Analytical and numerical results of 1-D glucose diffusion in collagen with exponential cell growth 
 
Note that the axis orientation and time span of these plots has been altered from the preceding                 
plots to improve the clarity of the results. The plots were again generated just positive of x = 0 to                    
remove distortion associated with the boundary. These plots even more clearly illustrate the             
rapid depletion of the glucose concentration which reaches 0 in the portion of the matrix right                
next to the glucose source in approximately 150 hours. 
 
This result was not unexpected. The exponential growth assumption was an over-simplification            
that generated cell densities that were much greater than what would likely occur in a real                
matrix in a very short period of time. This is due to the fact that, while cells do proliferate in a                     
way that can be approximated exponentially, this pattern of proliferation has limits. The issues              
with the exponential growth assumption are discussed in the following section. 

5. 1-D Glucose Diffusion in Collagen and Alginate Matrices with          
Sigmoidal Cell Growth 
Fundamentally, while exponential cell growth does add time-dependence to the system, it            
should be noted that it does not properly model cell growth long term. The reason for this is that                   
cells do not divide infinitely as an exponential model suggests, since the matrix that the cells are                 
encapsulated in has a limited amount of space. 
 
A more accurate time-dependent growth model would be a sigmoidal curve, in which cells              
initially grow at an exponential rate, but subsequently level off at a maximum. It is difficult to                 
determine exactly what the maximum growth level is for any group of cells, since it is affected by                  
the cell type, the available space, and the cell morphology, but for this model, we will assume a                  
maximum at a 10 x 109 cells/L density. Using previously-characterized growth data for the              
HepG2 cell line[13], a sigmoidal growth curve can be modeled as follows: 
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Figure 7: Sigmoidal Cell Growth model. 

 
When applied to the diffusion model, all parameters are identical to those of the exponential               
growth scenario, with the exception of the forcing term having dependence on a sigmoidal,              
rather than exponential, growth rate. To reiterate, ρmax represents the maximum population            
density of 10 x 109 cells/L (10 million cells/mL), while ρ0 represents the initial cell seeding              
density of 5 x 108 cells/L (0.5 million cells/mL), and k is a constant derived from a previously                  
determined HepG2 cell growth rate (approx. 0.03615). 

 
Because of the difficulties associated with integrating the term representing sigmoidal growth            
and consumption, the system was solely solved numerically, with the output shown in Figure 8. 

 
Figure 8: Numerical results of 1-D glucose diffusion model in collagen with sigmoidal cell growth 

 
Like the exponential growth model, the concentration of glucose rapidly falls to zero. This              
indicates that the system is not suitable for sustaining a cell density of 10 million cells/mL. In an                  
experimental scenario, there are several potential methods for resolving this, assuming that the             
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desired cell density would ideally remain uncompromised. The first is to increase the nutrient              
concentration flowing through the channel, which would increase the value of C0 at x = 0.                
Alternatively, the material can be changed to one that allows for increased levels of diffusion.  
 
For instance, the diffusion constant of glucose through collagen gels is ~1.3 x 10-6 cm2/s, while                
the diffusion constant of glucose through alginate gels is nearly 6 times greater at ~7.3 x 10-6                 
cm2/s. Since alginate gels are also biocompatible and have been used as encapsulation             
materials for HepG2 cells[2], we model a system using alginate gels. Again, all parameters of the                
system are identical to the previous case, with the exception of the increased the diffusion               
constant such that D = 1.3 x 10-6 cm2/s → D = 7.3 x 10-6 cm2/s. Results are shown in Figure 9. 
 

 
Figure 9: Numerical results of 1-D glucose diffusion model in alginate with sigmoidal cell growth 

 
Notably, the substitution of collagen with alginate greatly mitigates the glucose shortage in the              
system, with the concentration stabilizing at approximately 8 mM across the matrix after 4              
weeks. In this manner, the model demonstrates usefulness in assessing the potential impact of              
different matrix materials on cell viability, as a simple change in just the diffusion parameter was                
able to produce a large modification of the behavior of the entire system. 

6. 2-D Glucose Diffusion in Alginate Matrices with Sigmoidal Cell          
Growth 
Thus far, the diffusion model has been limited to one dimension for simplicity. However, in order                
to visualize the solution over the entire area of the matrix and explore further applications, the                
model can be expanded into two dimensions. Specifically, the model will be expanded to              
incorporate the y-dimension, running parallel to the length of the vascular channel, as modeled              
in Figure 10. 
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Figure 10: Initial diffusion-system setup 

 
The equations for the two dimensional diffusion model is given below. Initially, all conditions are               
equivalent to the one dimensional sigmoidal growth model, with the addition of two zero flux               
boundary conditions to represent the sealing of the system in the y-boundaries. 

 

 
Just as was the case with the 1-Dimensional sigmoidal cell growth model, the forcing term Q(t)                
can be described as a product of the glucose consumption rate per cell U, and the cell seeding                  
density ⍴(t). Simplified numbers are also shown for easing approximation. 

 
Again, because of the integration-difficulties brought about by the forcing term, we will solely              
use numerical methods for finding a solution to the system, this time with the explicit two                
dimensional finite differences method (shown below), since the MATLAB pdepe function is not             
suited for more than one dimension.  

 
 
Notably, an implicit finite differences method was initially utilized to estimate the model, which              
was accomplished through the adaptation of an open source MATLAB script (Copyright (c)             
2012, Suraj Shankar). However, due to concerns about the time interval, this was switched with               
the explicit method shown above. The script still remained in use, and the final version is thus                 
still a modification of existing code. 
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6.1 2-D Model of Collagen matrix with constant concentration along          
channel 
In order to confirm that the behavior of the 2D model aligned with that of the 1D model                  
described previously, we initially modeled glucose diffusion through both a collagen and alginate             
matrix with parameters identical to those of the sigmoidal model described in Section 5. That is,                
a constant concentration C0 = 24.75 mM existed at x = 0, while an initial concentration C0/2 =                  
12.375 mM existed throughout the matrix at t = 0, and zero flux conditions were present at all                  
other x and y boundaries. A model of the collagen matrix is shown first (Figure 11). Because                 
the model plots the concentration on an x-y plane in real-time, several frames are shown below,                
spanning from 0 - 288 hours.  

 
 
Figure 11: Numerical results of 2-D glucose diffusion model in collagen with sigmoidal cell growth at various                 
timepoints 
 
The results match those of the 1D model (Figure 8) very well, with the glucose consumption                
rate overpowering the rate at which diffusion from the vascular channel is able to resupply it,                
resulting in only the cells closest to the channel (x = 0) having an adequate glucose supply.                 
Additionally, because the channel runs entirely in the y-direction, the glucose concentration is             
consistent across the entirety of the y-dimension.  

6.2 2-D Model of Alginate matrix with constant concentration along channel 
As described previously, the second application of the model uses alginate as a medium, and               
has otherwise identical conditions to the first model. The only difference, again, is that the               
diffusion constant (D) is changed from 1.3 x 10-6 cm2/s (collagen) to 7.3 x 10-6 cm2/s (alginate).                 
Again, frames of the results from 0 to 288 hours are shown below (Figure 12). 
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Figure 12: Numerical results of 2-D glucose diffusion model in alginate with sigmoidal cell growth at various                 
timepoints 
 
Just like with the 1D model (Figure 9) the increased diffusivity provided by the alginate matrix is                 
able to balance the rate of glucose consumption by the sigmoidally-increasing number of cells,              
and a stable equilibrium is eventually reached in both the x and y dimensions. 

6.3 2-D Model of Alginate matrix with linearly decreasing concentration          
along channel 
Up until now, we have assumed that the concentration of glucose in the channel (x = 0) remains                  
constant. In reality though, as glucose from earlier points in the channel (closer to y = 0) diffuse                  
into the matrix, less should remain in the channel. Thus, as position in the y-dimension               
increases, glucose concentration in the channel should decrease. We approximate this behavior            
using a model that is identical to the second, with the exception of having a linearly decreasing                 
function replacing the constant term for the concentration along the vascular channel at x = 0. 

 
Notably, unlike the rest of the model, the linearly decreasing function is not based on existing                
published results, and is was chosen arbitrarily simply to model the potential behavior. The              
results of this change are shown in Figure 13. 
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Figure 13: Numerical results of 2-D glucose diffusion model in alginate with sigmoidal cell growth and                
space-dependent vascular channel glucose concentration at various timepoints 
 
The results are similar to those of the previous case. However, a decreasing glucose              
concentration is clearly visible along x = 0, and the result is that positions further along the                 
y-dimension receive significantly less glucose. This results in a lower overall glucose            
concentration at these positions. This model only shows results up to t = 288 hours, but with                 
increased perfusion time, it’s possible that the glucose concentration at these locations may             
drop to zero, indicating that while cells would be able to survive with constant glucose               
concentration in the vascular channel, the same may not be true if the concentration decreases               
along the channel length. 

6.3 2-D Model of Alginate matrix with linearly decreasing concentration          
along channel and open boundaries 
The fourth and last two-dimensional model changes the model significantly by altering the             
zero-flux boundary conditions to zero-value boundary conditions. Thus far, we have modeled in             
a controlled scenario in which the matrix is perfused in a sealed container (described previously               
in Section 2). However, the end goal of these bioprinted vascularized scaffolds is to be               
implanted in tissue, where seals will not be present (Figure 14). Typically when implanting, the               
scaffold will simply be sutured in the location of interest, with the scaffold channel linked to                
existing blood vessels so perfusion is then maintained by the body of the host. 
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Figure 14: Implanted vascularized muscle scaffold in rat[9] 

 
In this scenario, all existing zero-flux boundaries would be converted into zero-value            
boundaries, while the x = 0 boundary condition where the vascular channel exists would remain               
unchanged. 

 
As was the case with previous iterations of the model, frames are graphed spanning from 0 to                 
288 hours in Figure 15. 

 
Figure 15: Numerical results of 2-D glucose diffusion model in alginate with sigmoidal cell growth, space-dependent                
vascular channel glucose concentration, and zero-value boundary conditions at various timepoints 
 
As expected, several major changes are visible. At the boundaries, the rate of diffusion is not                
quick enough to counter the combined loss of glucose through consumption and leakage,             
preventing the channel from completely sustaining the layer of cells. While this may appear dire,               
it should be noted that although we assumed zero-value boundary conditions in this case, most               
tissues do not have zero glucose concentration, and as such, it’s possible that the surrounding               
tissue itself may be able to help sustain glucose levels. However, that will be left for future                 
modeling. 
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7. Conclusions and Future Considerations 
It should be reiterated that the goal of this endeavor was simply to generate a model that could                  
predict the effect of various factors on the presence of a specific nutrient in the cell. In that                  
sense, this model could potentially be an experimental tool for researchers in the area. Thus far,                
we have illustrated that the model is able to incorporate a variety of parameters including 

● Different rates of cell growth, resulting in different rates of consumption. 
● Different matrix materials used, resulting in different diffusion constants. 
● Multiple dimensions. 
● Different environments, resulting in different boundary conditions. 

 
However, in addition to these parameters explored, there are many that have not been varied.               
For instance, this report examines only a single cell type, the HepG2 cell line. However, there                
are many different cell types for which there are applications that would require the creation of                
seeded matrices, including myoblasts, osteoblasts, progenitors, stem cells, fibroblasts, etc.,          
each of which would likely produce a different glucose consumption rate and growth rate.              
Additionally, the only nutrient explored was glucose, but in many cell types, a different nutrient,               
such as amino acids or vitamins, may be the limiting factor. In such cases, the diffusion constant                 
through any given material would be altered.  
 
Beyond this, there is also the fact that matrix thickness was not incorporated into the model, and                 
that the model as a whole was extremely simple, consisting of a linear vascular channel through                
a rectangular matrix. In reality, there can be many geometries incorporated, such as multiple              
parallel vascular structures, or sinusoidal vascular structures[8]. Both 3D modeling and more            
advanced vascular structures would likely be difficult to solve for analytically, but with numerical              
methods, it may be possible to explore the dynamics associated with them as well. 
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Appendix A Detailed Analytical Solution to Stable Cell Density         
Differential Equation  

 

 

 
The partial differential equation is solved by finding a particular solution Cp and its              
homogeneous solution CH. We find the particular solution Cp assuming steady state.  

 
Cp is required to satisfy the boundary conditions below.  

 
Rearranging the above equation gives us 

 
Cp is in the form as below with a and b as presuming coefficients.  

 
By applying boundary conditions to the expression of Cp, we are able to solve for a and b. 

 

 
Therefore, our steady state solution as well as particular solution is 

 
Now, we are going to solve for the homogeneous equation shown below.  
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Boundary conditions for the above equation are illustrated below.  

 
By doing variable separation, we find the following expression of CH that satisfies both boundary               
conditions. Bn is coefficient of the nth term. 

 
Full solution is expressed by the addition of Cp and CH, which is equivalent to the following. 

 

 
In order to find the values of Bn, the initial condition is applied to the above expression of C.  

 

 
Bn can be expressed as 

 

 

 

 
Therefore, the final full solution is shown as below.  
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Appendix B Detailed Analytical Solution to Exponential Growth        
Differential Equation 
 

 
Green’s Function for the Value - Flux case: 

 
In succession, we solve for: 

● Initial Condition Term 

 
● Driving force term 

 
● Value boundary at x = 0 term 

 
● Flux boundary at x = L term 

 
 

 
Solving for the Initial condition term 
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Because t0 = 0 in this case, we simplify to 

  
Here, cos(nπ/2) = 0 when n is odd, and as a result, the cosine term can be removed 

 
 

Solving for the Driving force term 

 
 

Solving for the Value boundary at x = 0 
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Solving for the Flux boundary at x = L 
 
This term goes to 0 because the flux at x = L, shown as C’L is 0. 
 

 
 

 
Full solution (Summation of all previous terms) 
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Appendix C MATLAB Code for 1-D Stable Cell Density Scenario 
%% Basic Coefficients 
T = 960; 
L = 2; 
  
global D C0 R k 
D = 1.3e-6*3600; 
C0 = 24.75; 
R = 2.16e-8 * 1.5e6; 
k = 0.03615; 
  
% domain 
dx = 0.02; % step size in x dimension 
dt = 9.6;  % step size in t dimension 
  
xmesh = 0:dx:L; % domain in x 
tmesh = 0:dt:T;  % domain in t 
  
nx = length(xmesh); % number of points in x dimension 
nt = length(tmesh); % number of points in t dimension 
  
%% PDEPE Function 
sol_pde = pdepe(0,@nogrowth,@icexp,@bcexp,xmesh,tmesh); 
  
figure(1) 
surf(tmesh,xmesh(1:nx),sol_pde(:,1:nx)','EdgeColor','none') 
axis([0,T,0.01,2,0,inf]) 
title({'1-D Glucose Diffusion Model in Collagen - Numerical','(Stable Cell         
Density)'},'Fontsize',16) 
xlabel('Time (hours)','Fontsize',16) 
ylabel('Distance (cm)','Fontsize',16) 
zlabel('Glucose Concentration (mM)','Fontsize',16) 
%% Analytical Solution 
sol_anal = zeros(nt,nx); 
N = 200; 
  
for t=1:nt 
    for x=1:nx 
        sol_anal(t,x) = R/2/D*xmesh(x)^2 - R*L/D*xmesh(x) + C0; 
        for n=0:N-1 

sol_anal(t,x) = sol_anal(t,x) +     
(16*R*L^2/(D*(2*n+1)^3*pi^3)-2*C0/((2*n+1)*pi))*... 
                sin((2*n+1)*pi*xmesh(x)/2/L)*exp(-D*((2*n+1)*pi/2/L)^2*tmesh(t)); 
        end 
    end 
end 
  
figure(2) 
surf(tmesh,xmesh(1:nx),sol_anal(:,1:nx)', 'EdgeColor','none') 
axis([0,T,0.01,2,0,inf]) 
title({'1-D Glucose Diffusion Model in Collagen - Analytical','(Stable Cell         
Density)'},'Fontsize',16) 
xlabel('Time (hours)','Fontsize',16) 
ylabel('Distance (cm)','Fontsize',16) 
zlabel('Glucose Concentration (mM)','Fontsize',16) 
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Appendix D MATLAB Code for 1-D Exponential Cell Growth Scenario 
 
%%% Exponential Growth Scenario 
 
%% Define constants 
global D L tmax C_0 C_m R k 
% Initial glucose concentration in matrix 
C_0_su = 12.375; % mmol/L 
C_0 = C_0_su * .001; % mmol/cm^3 - converted units 
% Glucose concentration in perfused media 
C_m_su = 24.75; %mmol/L 
C_m = C_m_su * .001; % mmol/cm^3 - converted units 
 
% Diffusion of glucose in collagen gell 
D_su = 1.3 * 10^(-6); % cm^2/sec 
D = D_su * 60 * 60; %cm^2/hr - unit conversion 
% Distance from vascular channel to wall 
L = 2; % cm 
tmax = 960; % hours 
% Seeding density 
S = 0.5 * 10^6; %cells/cm^3 
% uptake rate per cell 
Upc_su = 1.8 * 10^-17; % mol/cell/s 
Upc = Upc_su * 3.6*10^6; %mmol/cell/hr 
% initial uptake rate per vol 
R = S * Upc; %mmol/cm^3/hr 
% Exponent rate constant in R*2^(k*t) 
k = 0.03615; 
 
% Domain 
dx = L/100; % step size in x dimension 
dt = tmax/100; % step size in t dimension 
xmesh = 0:dx:L; % domain in x 
tmesh = 0:dt:tmax; % domain in t 
nx = length(xmesh); % number of points in x dimension 
nt = length(tmesh); % number of points in t dimension 
[xx,tt] = meshgrid(xmesh, tmesh); % mesh for calculation comfort 
% Analytical solution 
 
% % plot exponential model 
% figure 
% plot(tmesh,Upc * 2 .^ (k*tmesh))  
 
sol_anal = zeros(size(xx)); 
 
% Non-zero odd terms 
count_max = 1000; 
 
for count = 0:count_max 
    n = 2*count + 1; 

icterm = C_0 * 4/(n*pi()).* sin(n*pi().*xx/(2*L)) .* exp((-1)*D*(n*pi()/(2*L))^2 .*          
tt); 
  drterm = (-1) * R * 16 * L^2 / (n*pi()) * ... 
  sin(n*pi()*xx/(2*L)).* (2.^(k*tt) - exp((-1)*D*(n*pi()/(2*L))^2 .* tt)) / ... 
  (D*(n*pi())^2+k*L^2*log(16)); 
  uLterm = C_m * (4/(n*pi())) * ... 
  sin(n*pi()*xx/(2*L)) .* (1-exp((-1)*D*(n*pi()/(2*L))^2.* tt)); 
  sol_anal = sol_anal + icterm + drterm + uLterm; 
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end 
 
% plot analytical solution 
figure () 
surf(tmesh,xmesh,sol_anal'*1000, 'EdgeColor','none') 
% axis([0,tmax,0.1,2,0,inf]) 
% view(-140,20) 
axis([0,200,0.1,2,0,inf]) 
view(60,40) 
caxis([0,inf]) 
tit_An = {'1-D Glucose Diffusion Model in Collagen - Analytical', '(Exponential Cell            
Growth)'}; 
title(tit_An,'fontsize',16) 
xlabel('Time (hours)','fontsize',16) 
ylabel('Distance (cm)','fontsize',16) 
zlabel('Glucose Concentration (mM)','fontsize',16) 
 
% solution using Matlab's built in "pdepe" 
sol_pdepe = pdepe(0,@pdefun,@ic,@bc,xmesh,tmesh); 
figure() 
surf(tmesh,xmesh,sol_pdepe'*1000,'EdgeColor','none') 
% axis([0,tmax,0.1,2,0,inf]) 
% view(-140,20) 
axis([0,200,0.1,2,0,inf]) 
view(60,40) 
caxis([0,inf]) 
tit_Num = {'1-D Glucose Diffusion Model in Collagen - Numerical', '(Exponential Cell            
Growth)'}; 
title(tit_Num,'fontsize',16) 
xlabel('Time (hours)','fontsize',16) 
ylabel('Distance (cm)','fontsize',16) 
zlabel('Glucose Concentration (mM)','fontsize',16) 
 
% ASSOCIATED FUNCTIONS  
function [c, f, s] = pdefun(x, t, u, DuDx) 
% PDE coefficients functions 
global D R k 
c = 1; % leave as 1 - could be 1/D if D not included in f 
f = D * DuDx; % diffusion 
s = (-1) * R*2^(k*t); % driving term 
end 
function u0 = ic(x) 
% Initial conditions function 
global C_0 
u0 = C_0; 
end 
function [pL, qL, pR, qR] = bc(xL, uL, xR, uR, t) 
% Boundary conditions function 
% In the form of general mixed BC (Robin BC): 
% Left: pL + qL * f(x,t,u,du/dx) = 0 
% Right: pR + qR * f(x,t,u,du/dx) = 0 
global C_m 
% left boundary condition constant value at media concentration 
pL = uL - C_m;  
qL = 0; % if flux term, enter 1, else 0 
% right boundary condition flux = 0 
pR = 0;  
qR = 1; % if flux term, enter 1, else 0 
end 
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Appendix E MATLAB Code for 1-D Sigmoidal Cell Growth Scenario 
 
function sigmoidal_model_II 
  
% diffusion constant 
global D 
D = 7.3*10^-6*3600; % Diffusion Constant in cm^2/hr 
%%% TURN TO -140 and 20 %%% 
  
% domain 
xmesh = 0:0.1:2; % domain in x (cm) 
tmesh = 0:20:960;  % domain in t (hr) 
  
% solution using Matlab's built in "pdepe" 
sol_pdepe = pdepe(0,@pdefun,@ic,@bc,xmesh,tmesh); 
  
figure(2) 
surf(tmesh,xmesh,sol_pdepe') 
title({'1-D Glucose Diffusion Model in Alginate - Numerical'; '(Sigmoidal Cell          
Growth)'}, 'fontsize', 16) 
xlabel('Time (hours)', 'fontsize', 16) 
ylabel('Distance (cm)', 'fontsize', 16) 
zlabel('Glucose Concentration (mM)', 'fontsize', 16) 
zlim([0 25]); 
  
% function definitions for pdepe: 
% -------------------------------------------------------------- 
function [c, f, s] = pdefun(x, t, u, DuDx) 
% PDE coefficients functions 
  
global D 
c = 1; 
f = D * DuDx; % diffusion 
  
C0 = 1*10^6; 
Cn = 10*10^6; 
k = 0.03615; 
a = log(Cn/C0-1)/k; 
  
s = -6.48*10^-11/(3/1000)*(Cn/(1+exp(-k*(t-a)))); % nonzero driving term 
  
% -------------------------------------------------------------- 
function u0 = ic(x) 
% Initial conditions function 
  
u0 = 12.375; % Initial Condition Uniformity 
  
% -------------------------------------------------------------- 
function [pl, ql, pr, qr] = bc(xl, ul, xr, ur, t) 
% Boundary conditions function 
  
pl = ul-24.75; % FLUX of ZERO at Left Boundary 
ql = 0;  % Indicates Flux at Left Boundary Exists 
pr = 0; % Value of 5.5 at Right Boundary 
qr = 1;  % Indicates no Flux Condition at Right Boundary 
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Appendix F MATLAB Codes for 2-D Sigmoidal Cell Growth Scenario 
 
Section 1: Original open source script used as foundation for model 
 
Copyright (c) 2012, Suraj Shankar 
All rights reserved. 
 
Redistribution and use in source and binary forms, with or without 
modification, are permitted provided that the following conditions are 
met: 
 

* Redistributions of source code must retain the above copyright 
 notice, this list of conditions and the following disclaimer. 

* Redistributions in binary form must reproduce the above copyright 
 notice, this list of conditions and the following disclaimer in 
 the documentation and/or other materials provided with the distribution 
 
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS          
"AS IS" 
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR         
PURPOSE 
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS           
BE 
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 
POSSIBILITY OF SUCH DAMAGE. 
 
 
% Simulating the 2-D Diffusion equation by the Finite Difference 
...Method 
% Numerical scheme used is a first order upwind in time and a second 
...order central difference in space (Implicit and Explicit) 
 
%% 
%Specifying parameters 
nx=40; %Number of steps in space(x) 
ny=50; %Number of steps in space(y)   
nt=30; %Number of time steps 
dt=0.01; %Width of each time step 
dx=2/(nx-1); %Width of space step(x) 
dy=2/(ny-1); %Width of space step(y) 
x=0:dx:2; %Range of x(0,2) and specifying the grid points 
y=0:dy:2; %Range of y(0,2) and specifying the grid points 
u=zeros(nx,ny); %Preallocating u 
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un=zeros(nx,ny); %Preallocating un 
vis=0.1; %Diffusion coefficient/viscocity 
UW=0; %x=0 Dirichlet B.C 
UE=0; %x=L Dirichlet B.C 
US=0; %y=0 Dirichlet B.C 
UN=0; %y=L Dirichlet B.C 
UnW=0; %x=0 Neumann B.C (du/dn=UnW) 
UnE=0; %x=L Neumann B.C (du/dn=UnE) 
UnS=0; %y=0 Neumann B.C (du/dn=UnS) 
UnN=0; %y=L Neumann B.C (du/dn=UnN) 
 
%% 
%Initial Conditions 
for i=1:nx 

for j=1:ny 
 if ((1<=y(j))&&(y(j)<=1.5)&&(1<=x(i))&&(x(i)<=1.5)) 
 u(i,j)=2; 
 else 
 u(i,j)=0; 
 end 

end 
end 
 
%% 
%B.C vector 
bc=zeros(nx-2,ny-2); 
bc(1,:)=UW/dx^2; bc(nx-2,:)=UE/dx^2;  %Dirichlet B.Cs 
bc(:,1)=US/dy^2; bc(:,ny-2)=UN/dy^2;  %Dirichlet B.Cs 
%bc(1,:)=-UnW/dx; bc(nx-2,:)=UnE/dx;  %Neumann B.Cs 
%bc(:,1)=-UnS/dy; bc(:,nx-2)=UnN/dy;  %Neumann B.Cs 
%B.Cs at the corners: 
bc(1,1)=UW/dx^2+US/dy^2; bc(nx-2,1)=UE/dx^2+US/dy^2; 
bc(1,ny-2)=UW/dx^2+UN/dy^2; bc(nx-2,ny-2)=UE/dx^2+UN/dy^2; 
bc=vis*dt*bc; 
 
%Calculating the coefficient matrix for the implicit scheme 
Ex=sparse(2:nx-2,1:nx-3,1,nx-2,nx-2); 
Ax=Ex+Ex'-2*speye(nx-2); %Dirichlet B.Cs 
%Ax(1,1)=-1; Ax(nx-2,nx-2)=-1;  %Neumann B.Cs 
Ey=sparse(2:ny-2,1:ny-3,1,ny-2,ny-2); 
Ay=Ey+Ey'-2*speye(ny-2); %Dirichlet B.Cs 
%Ay(1,1)=-1; Ay(ny-2,ny-2)=-1;  %Neumann B.Cs 
A=kron(Ay/dy^2,speye(nx-2))+kron(speye(ny-2),Ax/dx^2); 
D=speye((nx-2)*(ny-2))-vis*dt*A; 
 
%% 
%Calculating the field variable for each time step 
i=2:nx-1; 
j=2:ny-1; 
for it=0:nt 

un=u; 
h=surf(x,y,u','EdgeColor','none'); %plotting the field variable 
shading interp 
axis ([0 2 0 2 0 2]) 
title({['2-D Diffusion with {\nu} = ',num2str(vis)];['time (\itt) =        

',num2str(it*dt)]}) 
xlabel('Spatial co-ordinate (x) \rightarrow') 
ylabel('{\leftarrow} Spatial co-ordinate (y)') 
zlabel('Transport property profile (u) \rightarrow') 
drawnow; 
refreshdata(h) 
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%Uncomment as necessary 
%Implicit method: 
U=un;U(1,:)=[];U(end,:)=[];U(:,1)=[];U(:,end)=[]; 
U=reshape(U+bc,[],1); 
U=D\U; 
U=reshape(U,nx-2,ny-2); 
u(2:nx-1,2:ny-1)=U; 
%Boundary conditions 
%Dirichlet: 
u(1,:)=UW; 
u(nx,:)=UE; 
u(:,1)=US; 
u(:,ny)=UN; 
%Neumann: 
%u(1,:)=u(2,:)-UnW*dx; 
%u(nx,:)=u(nx-1,:)+UnE*dx; 
%u(:,1)=u(:,2)-UnS*dy; 
%u(:,ny)=u(:,ny-1)+UnN*dy; 
%} 
%Explicit method: 
%{ 

u(i,j)=un(i,j)+(vis*dt*(un(i+1,j)-2*un(i,j)+un(i-1,j))/(dx*dx))+(vis*dt*(un(i,j+1)-2*u
n(i,j)+un(i,j-1))/(dy*dy)); 

%Boundary conditions 
%Dirichlet: 
u(1,:)=UW; 
u(nx,:)=UE; 
u(:,1)=US; 
u(:,ny)=UN; 
%Neumann: 
%u(1,:)=u(2,:)-UnW*dx; 
%u(nx,:)=u(nx-1,:)+UnE*dx; 
%u(:,1)=u(:,2)-UnS*dy; 
%u(:,ny)=u(:,ny-1)+UnN*dy; 
%} 

End 
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Section 2: Modified script based on section 1, much of it is identical 
 
% Modified script 
clear 
close all 
%% 
%Specifying parameters 
nx=40; %Number of steps in space(x) 
ny=50; %Number of steps in space(y)   
nt=1440; %Number of time steps 
dt=0.2; %Width of each time step 
dx=2/(nx-1); %Width of space step(x) 
dy=3/(ny-1); %Width of space step(y) 
x=0:dx:2; %Range of x(0,2) and specifying the grid points 
y=0:dy:3; %Range of y(0,2) and specifying the grid points 
u=zeros(nx,ny); %Preallocating u 
un=zeros(nx,ny); %Preallocating un 
vis=1.3 * 10^-6*3600; %Diffusion coefficient/viscocity 
%vis=7.3 * 10^-6*3600; 
 
UW=24.75; %x=0 Dirichlet B.C 
UE=0; %x=L Dirichlet B.C 
US=0; %y=0 Dirichlet B.C 
UN=0; %y=L Dirichlet B.C 
UnW=0; %x=0 Neumann B.C (du/dn=UnW) 
UnE=0; %x=L Neumann B.C (du/dn=UnE) 
UnS=0; %y=0 Neumann B.C (du/dn=UnS) 
UnN=0; %y=L Neumann B.C (du/dn=UnN) 
 
%% 
%Initial Conditions 
for i=1:nx 

for j=1:ny 
   
 u(i,j)=12.375; 
   

end 
end 
u(1,:)=24.75; 
%u(1,:)=24.75-y*3; 
%u(1,:)=24.75*exp(-y/3); 
 
 
%B.C vector 
bc=zeros(nx-2,ny-2); 
bc(1,:)=UW/dx^2; bc(nx-2,:)=UE/dx^2;  %Dirichlet B.Cs 
bc(:,1)=US/dy^2; bc(:,ny-2)=UN/dy^2;  %Dirichlet B.Cs 
%bc(1,:)=-UnW/dx; bc(nx-2,:)=UnE/dx;  %Neumann B.Cs 
%bc(:,1)=-UnS/dy; bc(:,nx-2)=UnN/dy;  %Neumann B.Cs 
%B.Cs at the corners: 
bc(1,1)=UW/dx^2+US/dy^2; bc(nx-2,1)=UE/dx^2+US/dy^2; 
bc(1,ny-2)=UW/dx^2+UN/dy^2; bc(nx-2,ny-2)=UE/dx^2+UN/dy^2; 
bc=vis*dt*bc; 
 
%Calculating the field variable for each time step 
i=2:nx-1; 
j=2:ny-1; 
 
v = VideoWriter('Alginatesuccessnew.avi'); 
 
open(v) 
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for it=0:nt 

un=u; 
h=surf(x,y,u','EdgeColor','none'); %plotting the field variable 
shading interp 
view(135,30) 
axis ([0 2 0 3 0 30]) 

  
title({['2-D Diffusion with collagen'];['time (\itt) =      

',num2str(floor(it*dt))]}) 
  

xlabel('Spatial co-ordinate (x) \rightarrow') 
ylabel('{\leftarrow} Spatial co-ordinate (y)') 
zlabel('Transport property profile (u) \rightarrow') 
drawnow; 
refreshdata(h) 
F(it+1) = getframe(gcf); 
if rem(it,8)==0 
writeVideo(v,F(it+1)) 
end 
%Explicit method: 

  

u(i,j)=un(i,j)+((vis*dt*(un(i+1,j)-2*un(i,j)+un(i-1,j)))/(dx*dx))-dt*(6.48*10^-11/0.00
3)*(10*10^6/(1+exp(-0.03615*it*dt-log(9/0.03615))))+((vis*dt*(un(i,j+1)-2*un(i,j)+un(i
,j-1)))/(dy*dy)); 

%Boundary conditions 
%Dirichlet: 
%u(1,:)=24.75-y*3; 
%u(1,:)=24.75*exp(-y/4); 
u(1,:)=UW; 
%u(nx,:)=UE; 
%u(:,1)=US; 
%u(:,ny)=UN; 
%Neumann: 
%u(1,:)=u(2,:)-UnW*dx; 
u(nx,:)=u(nx-1,:)+UnE*dx; 
u(:,1)=u(:,2)-UnS*dy; 
u(:,ny)=u(:,ny-1)+UnN*dy; 

  
end 
close(v) 
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